这篇文章主要是面向自学TCP/IP的读者的.因为市面上讲解计算机网络的书虽然非常多,但是个人认为没有一本可以做到深入浅出的.都是照搬某些权威书籍中的概念,使得很多读者读了之后还是没有具体概念.希望我写的东西可以让大家有个具体概念,而不是只停留在能够背出官方的,严谨的,深奥的概念.
TCP/IP基础讲座 读过关于网络的课程的,都知道ISO-OSI 7层协议这个名词,许多书籍都会具体的画出那幅图,然后标注上物理层,数据链路层,网络层等等.背的大家要死.但是却又不知道具体这些层次干吗用的勒?
其实在互联网中,由于实际使用的是TCP/IP模型,也就是DOD模型(现在不知道没关系,后面会说).所以7层模型在现实网络环境中只是一个理论上,学究派的东西.这个模型中,我们真正关心的是下面的3层.
1.物理层 .哦.是的.这个名词还算容易了解.网卡还有那些网线构成了这一层.那些在网线中传播的二进制数据流是这层的具体表象.也就是说,这一层上面没有什么协议(不是很精确的说法,但是你可以这么理解).有的都是电流而已.我们把两台机器用网线连起来.或者用HUB把机器都连起来,这些工作就是物理层的工作.
有2个设备属于物理层的,一个是中继器,一个是HUB.大家知道.物理上面的连线距离一长就会产生电信号的衰减.为了重新加强这个信号,我们就需要在一定距离之后加上一个信号放大器,这就是中继器(repeater)
恩...这个比较容易理解.repeater就是连接在2根网线之间的么.没有做任何处理.所以只是一个物理设备.属于1层的.
那么集线器(HUB) 呢?这个怎么会是在1层???似乎非常难以理解.
当我说出HUB的本质,大家就能够清楚了解了
HUB的本质其实只是一个多口中继器(MULTI PORT REPEATER) .啊...这样大家能够理解了.HUB不叫多口中继器其实只是为了销售上面的策略.他的本质就是连接多根网线的一个物理设备.也是不对经过的电信号做任何逻辑处理的.
2.数据链路层
欧~这个名词有些别扭了.DATA LINK层.英文似乎更加容易理解.
这个层面上面的东西不再是电信号了.而是DATA了.对,既然是DATA就有了逻辑关系了.这个层面上面的基本单位是帧(Frame) .这层和物理层的接触是最紧密的.他是把从网线上面传输的电流转换成0和1的组合.
物理层只是网卡对网线发出或者接受各种电平信号,那就是说物理层是无法判别电流的来源和目标的.那么把电流打成0和1的帧之后.里面就有逻辑数据了.有了数据,就可以判别数据从何而来,到何处去.所以也就可以真正的形成LINK.
既然可以判别地址,那么地址是按照什么来判别的呢?
那就是最重要的概念之一:MAC地址
大家肯定都听说过我们的网卡都有MAC地址
有些人可能也知道MAC地址都是唯一的.
对.MAC地址是全球唯一的.也就是说你的网卡虽然便宜.但是他也是世界上独一无二的.
有些人说他可以改MAC.那就不是唯一了.对.虽然可以更改,那只是欺骗上层对封包里面的MAC地址进行改写.你网卡真正的MAC地址是固化的.无法修改的.
基础知识二
2: TCP/IP.真实世界的模型
上一讲里面我们说过OSI 7层模型只是一个理论模型,而实际中只需要保证7层的功能能够实现,实际分层无需按照7层来分.而且如果真的分7层.那么数据处理的速度便要慢许多.
在实际应用中.使用最多的便是DoD模型.也成为TCP/IP协议簇
DoD模型(Department Of Defanse Model 美国国防部模型) 顾名思义,是美国国防部设计的一个网络模型.最早用于ARPANET.这些话可能在许多教材的第一章就会讲了.但是一般教材对于DoD模型与OSI模型对应关系都没有讲到.或者很多是模糊或者错误的.
在这里我就要描述一下2者对应关系.OSI模型有7层我们已经知道了,而DoD模型则只有4层.下面是对应关系
OSI DoD
7.Application ┐
6.Presentation |-> 4. Application/Process
5.Session ┘
4.Transport ---> 3. Host to Host
3.Network ---> 2. Internet
2.Data Link ┬-> 1. Network Access
1.Physical ┘
由于我不会制表符.所以图有些难看.其实就是OSI的1.2层对应DoD的第1层
OSI的5.6.7对应DoD的第4层
其实这个还是比较容易记忆的
由于物理层和数据链路层非常密切.所以分为一个.然后上面依次对应,最上面的一大块成为应用层(处理层)
现在我们有了一个可用的实际模型了.不过一般我们在描述某个设备或者协议的时候.还是会使用OSI的模型,比如我们在讨论SWITCH的时候,就会说他是一个2层的设备.而路由器是一个3层的设备,还会有一些特殊的设备,比如3层交换机,4层交换机.这些都是使用OSI模型进行分类的.这点大家不要搞混淆了.
我们一直听说TCP或者UDP.还有什么SMTP.POP3.这些协议到底是在哪一层定义的那?接下来的一张图会给大家一个非常清晰的概念了(不能算是图拉 😀 ).
4. APPLICATION
HTTP,FTP,telnet,SNMP,SMTP,POP3,DNS 等等
3.Host to Host
TCP,UDP
2.internet
ICMP,ARP,RARP,IP
1.Network Access
Ethernet,FastEthernet,Token Ring 等等
恩...这下清楚了.让我们从下至上来看看
首先是最下层的.包括了以太网,快速以太网,还有现在的千M以太网等等的协议,这些协议规定了线缆的绞数.连接方式等等物理层的东西.还有底层使用MAC通讯的方式等等.
接下来是IP.ARP这些.IP在OSI模型的时候也说过.通过IP地址.我们在转发包的时候无需知道具体目标机的位置.而路由器自然会根据路由表来转发.最后一站一站的慢慢传递.达到最终目标.而ARP协议就是在IP和MAC之间转换用的.
我在上一章提过,由于有了路由器,IP,整个网络才真正能够覆盖全球.所以这一层叫做internet大家也应该容易记忆了.
WOW.TCP,UDP是我们听说最多的了.他是属于控制网络连接的.在OSI称为Transport.传输层.在DoD内是Host to Host 端对端.意思其实是一样的.就是在在2台计算机之间构建出一个虚拟的通讯通道来.
最上面一层就无穷无尽了.所有的最终应用层的东西都在这里,你甚至可以定义你自己的协议类型.这些都是完全可以的.因为本身这一层就是提供给开发人员自行发挥的.只是上面列举的都经过标准化了.
TCP包头结构
源端口 16位
目标端口 16位
序列号 32位
回应序号 32位
TCP头长度 4位
reserved 6位
控制代码 6位
窗口大小 16位
偏移量 16位
校验和 16位
选项 32位(可选)
这样我们得出了TCP包头的最小大小.就是20字节.
UDP包头结构
源端口 16位
目的端口 16位
长度 16位
校验和 16位
恩...UDP的包小很多.确实如此.因为UDP是非可靠连接.设计初衷就是尽可能快的将数据包发送出去.所以UDP协议显得非常精简.
有一个问题,似乎这些头里面怎么没有IP地址啊.没有IP地址这些包往哪里发送那?
对.你观察的很仔细.TCP和UDP的头里面确实没有任何IP信息.我们回头想一下TCP和UDP是属于DoD的哪一层的? 对了!是第3层. 而IP则位于模型的第二层.也就是他们两者虽然有联系.但是不属于同一层.
模型的一个重要规则就是.当发送端发送一个数据,上一层将数据传往下一层的时候.上一层的包就成为了下一层包的数据部分.
而到接受端接受到数据.下一层将本层的头部信息去掉后交给上一层去处理.
那么我们来看看实际例子:
假使我们通过SMTP协议发送数据AAA到另外一段.那么数据先会被加上SMTP的头.成为[SMTP]AAA.往下发送到TCP层.成为[TCP][SMTP]AAA.再往下送到internet层[IP][TCP][SMTP]AAA.然后成为[MAC][IP][TCP][SMTP]AAA
这样通过enternet或者FastEnternet发送到路由器.路由器得到后替换自己的MAC地址上去.传到下一级的路由器.这样经过长途跋涉.最终这个数据流到达目标机.
目标机先从下面一层开始.去掉MAC,成为[IP][TCP][SMTP]AAA往上到IP层,恩,比对后是发送给我这个IP的.去掉,成为[TCP][SMTP]AAA.TCP接到了查看校验和,没错.往上[SMTP]AAA.最后SMTP协议去解释.得到了AAA.
万里长征终于结束.我们也将AAA发送到了目标机.大家也应该明白了为何TCP包头和UDP包头里面没有IP地址那?因为IP位于他们下面一层.TCP和UDP的包头信息是作为IP包的数据段来传送的.
IP层可不管那许多.他只管他那层的协议,也就是管把从上面层来的数据加上自己的头,传到下面一层.把从下面一层来的数据去掉头.传到上面一层.
每层都是这么干的.完美的契合完成了数据包的最终旅程.
基础三
3: MAC.最终地址
其实MAC的东西也说不好.也没什么好说的,我一直在考虑是否需要安排,不过既然说2~3层.肯定还是要写的
首先.我先介绍一个抓包软件 Ethereal 此软件为自由软件.当然类似的sniffer软件还有sniffer pro等等,但是从效率上还有轻便性来说.Ethereal都比同类软件好许多.可以通过www.ethereal.com 来下载此软件.我们今后的试验基本上都是基于这个软件的.
安装以后.我们就可以通过capture菜单下面的start来抓包了你会发现就算你没有进行任何网络操作的时候.也会有许多包进来.是的.因为网络上面充满广播.今后我们讲到ARP的时候还有其他协议的时候你们就会了解到即使你不进行任何操作.整个网络内也会充满许多广播.
好了.MAC地址在我们第一讲的时候介绍过.他是标识网卡的唯一地址所有的网卡在整个世界上都有唯一性的一个标识.MAC地址是固化在芯片中的.
现在我们在抓包的状态下ping一下局域网内的另一台服务器
然后停止抓包
这个时候主界面上就会有许多包了
找到Protocol为ICMP的.
对了.一个是ECHO(ping)request
一个是ECHO(ping)reply
一个是请求.一个是响应
点击其中一个包.我们可以看到详细内容,如图一
在软件的第二栏内就是给你分析好的数据
第三栏内是原始的数据包
我们看第一项
FRAME 58
恩.这里一项就是FRAME.
对了.FRAME就是2层的东西
这里显示的是统计信息
我们选择了FRAME可以看到最后的原始包里面数据是全选的
说明FRAME是包的最终形式.
接着我们选择Ethernet II
可以看到前14个字节被选中了
也就是第二层在第三层前面加上的头就是这个14个字节
接着往下选择.
选择Destination一项
这项是说明帧的目的地址
可以看到相应的原始包的包头前6个字节就是目的地址
对应的00:e0:4c:32:3a:0b 其实就是目标机器的网卡的MAC地址哟.
再看看Source源地址验证一下
源地址是00-20-ED-5C-7D-94
我们在命令模式下面使用ipconfig /all命令验证一下
Ethernet adapter Local Area Connection:
Connection-specific DNS Suffix . :
Description . . . . . . . . . . . : Realtek RTL8139/810x Family Fast Ethernet NIC
Physical Address. . . . . . . . . : 00-20-ED-5C-7D-94
Dhcp Enabled. . . . . . . . . . . : No
IP Address. . . . . . . . . . . . : 192.168.0.13
Subnet Mask . . . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . . . : 192.168.0.250
DNS Servers . . . . . . . . . . . : 202.96.199.133
202.96.209.5
Yahoo~完全吻合.正是从我们网卡发出的.
别急
最后下面还有一个Type
我们点击以后
FRAME的最后2个字节用来标识上层的协议类型
这里PING包是IP层的.
所以Type里面是IP(0x800)
如果GOOGLE搜索一下查看IP的类型代码的话
可以知道正是0x0800(16进制)哟.
下面还有好多哦.
别急
下面就是IP层的内容了.我们下次才会讲解到的.
接下来就是在2层的网络里面网卡如何相互通讯呢?
在正常情况下
每台机器并不知道别的机器的MAC地址
所以在每次的包
都是一个单播群发的包
目的MAC地址的机器会接受
而其他不是这个MAC地址的机器会丢弃
这样的情况就是用HUB的情况
所以大家可以想到
这种情况下面
1.所有的包都是群发的.非常消耗带宽,是很浪费的.
2.所有的机器都可以收到别人发给另外一个人的包.非常的不安全
对于第二点.大家就知道为什么我们在HUB的情况下面可以抓到所有网络上面通讯的包了.
这样的情况太差了.所以有了交换机的出现
我们第一章说过.交换机一是防止"冲突"
二就是加强了效率了.
在交换机内.
维护着一张CAM表(Content-Addressable Memory)
表内就记录着曾经通讯过的机器的MAC地址和对应的端口
第一次交换机不知道双方的位置,还是会单播群发那个包.
第二次目的方返回包的时候,交换机就会记录端口号和对应的MAC地址了
这样的情况下
1.所有的包不是所有的人都收到.带宽降低
2.别人无法接受到其他人之间的通讯.因为FRAME都是在固定的物理链路里面传输
这些大家知道为什么交换网络内sniffer是无法生效的 了吧.
当然.还有特殊的方法可以让交换网络可以侦听所有的包,就是把交换机的某个端口设置成为"混杂模式 ".
这里大家看到.数据包都是计算机生成以后发送出去的
所以可以任意修改里面的内容,只要符合规范就行.
大家一般所知的修改MAC地址也就是将包内的MAC地址进行替换,软性的修改.
而网卡的MAC地址则是固化的,无法修改的.
也正是由于数据包的这种可篡改性.导致了我们实际中的TCP/IP并不安全.